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1 Introduction

Einstein’s theory of general relativity plays a major role in astrophysics, par-
ticularly in scenarios involving compact objects such as neutron stars and
black holes. Those include gravitational collapse, γ-ray burts, accretion, rel-
ativistic jets in active galactic nuclei, or the coalescence of compact neutron
star (or black hole) binaries. Astronomers have long been scrutinizing these
systems using the complete frequency range of the electromagnetic spectrum.
Nowadays, they are the main targets for ground-based laser interferometers
of gravitational radiation. The direct detection of these elusive ripples in the
curvature of spacetime, and the wealth of new information that could be ex-
tracted thereof, is one of the driving motivations of present-day research in
relativistic astrophysics.

Theoretical astrophysics has long relied on numerical simulations as a
formidable way to improve our understanding of the dynamics of astrophysical
systems. For the case we are concerned with in this paper, the mathematical
framework upon which such simulations are based is nowadays developed to
high levels of sophistication. The equations governing the dynamics of rela-
tivistic astrophysical systems are an intricate set of coupled, time-dependent
partial differential equations, comprising the general relativistic hydrodynam-
ics and magnetohydrodynamics equations (GRHD/GRMHD hereafter) and
Einstein’s gravitational field equations. Simplifications can be made when
the “test-fluid” approximation holds, in which the fluid’s self-gravity is ne-
glected against the background gravitational field. Additionally, descriptions
employing ideal hydrodynamics (inviscid fluids) and ideal MHD (infinite con-
ductivity), are also fairly standard choices in numerical astrophysics. On the
other hand, there are also situations where the number of equations must
be augmented instead, as to account for radiative processes or microphysics
(finite-temperature equations of state (EOS) and nuclear physics).
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This article aims at presenting a brief overview of the equations of
GRHD/GRMHD within the 3+1 formalism of general relativity in ways suit-
able for numerical work. Space constraints limit the level of detail of the
presentation, which the interested reader can complement with the help of
the available literature on the subject (see [?, ?, ?, ?] and references therein).
The article also discusses the different numerical approaches designed to solve
hyperbolic systems of conservation laws such as the GRHD/GRMHD equa-
tions. Some examples in the numerical solution in scenarios of relativistic
astrophysics are mentioned in the last section.

2 General relativistic hydrodynamics

The GRHD equations are the local conservation laws of momentum and en-
ergy, encoded in the stress-energy tensor Tµν , and of the matter density, Jµ

(the continuity equation)

∇µTµν = 0, ∇µJµ = 0, (1)

where ∇µ stands for the 4-dimensional covariant derivative. (Throughout
Greek indices run from 0 to 3 and Latin indices from 1 to 3; geometrized
units G = c = 1 are used; G is Newton’s gravitational constant and c is the
speed of light.) The density current reads Jµ = ρuµ, where uµ is the 4-velocity
of the fluid and ρ its rest-mass density. We assume a perfect fluid stress-energy
tensor

Tµν = ρhuµuν + pgµν , (2)

where p is the pressure, h is the specific enthalpy, h = 1+ ε+p/ρ, ε being the
specific internal energy, and gµν is the spacetime metric tensor.

The previous system of equations is closed once a EOS is chosen, i.e. a
constitutive relation of the form p = p(ρ, ε). In the so-called test-fluid ap-
proximation the dynamics of the matter fields is completely described by the
previous conservation laws and the EOS. If such approximation does not hold,
these equations must be solved in conjunction with Einstein’s equations for
the gravitational field which describe the evolution of a dynamical spacetime.

The approach most commonly employed to solve Einstein’s equations in
Numerical Relativity is the so-called Cauchy or 3+1 formulation (IVP) (see [?]
and references therein for details). In this formulation spacetime is foliated into
a set of non-intersecting spacelike hypersurfaces, for which the lapse function
α measures the rate of advance of time along a timelike unit vector nµ normal
to a surface, and the spacelike shift vector βi describes how coordinates move
between different hypersurfaces. Introducing a coordinate chart (x0, xi) the
3+1 line element reads

ds2 = −(α2 − βiβ
i)dx0dx0 + 2βidxidx0 + γijdxidxj , (3)
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where γij is the spatial 3-metric induced on each spacelike slice. Hence, the
above conservation equations, Eq. (??), read

∂

∂xµ

√
−gJµ = 0,

∂

∂xµ

√
−gTµν = −

√
−gΓ ν

µλTµλ , (4)

where g = det(gµν) = α
√

γ, γ = det(γij) and Γ ν
µλ are the so-called Christoffel

symbols.
Chronologically, the first attempt to formulate and solve the equations

of relativistic Eulerian hydrodynamics in multidimensions was due to Wil-
son [?], who wrote the system as a coupled set of advection equations within
the 3+1 formalism. This approach sidestepped an important guideline for
the formulation of nonlinear hyperbolic equations, namely the preservation
of their conservation form. This is a necessary feature to guarantee correct
evolution in regions of entropy generation (shocks). As a result, some amount
of numerical dissipation (artificial viscosity terms) had to be used to stabilize
the numerical solution at discontinuities.

The main practical limitation of such non-conservative system was the
numerical inability to handle ultrarelativistic flows [?]. This handicap posed a
tremendous challenge to the numerical modelling of relativistic astrophysical
sources where flow velocities as large as 99% of the speed of light or higher are
known to exist. Paradigmatic examples of such sources are the jets associated
with active galactic nuclei as well as with γ-ray bursts, the most luminous
events in the Universe after the Big Bang. On the other hand, the presence
of the Lorentz factor (W ≡ αu0) in the convective (transport) terms of the
GRHD equations (and of the pressure in the specific enthalpy) make the
relativistic equations much more coupled than their Newtonian counterparts.
In an attempt to capture more accurately such coupling [?] proposed the
use of implicit schemes. While some progress was achieved limitations on the
fluid speeds attainable persisted, with a maximum value for W of about 10.
Ultrarelativistic flows could only be handled (and with explicit schemes) once
conservative formulations were adopted.

Since the early 1990s conservative formulations of the GRHD equations,
well-adapted to numerical methodology, were developed: [?] (1+1, general
EOS), [?] (covariant, perfect fluid EOS), [?] (3+1, general EOS), and [?] (co-
variant, general EOS). Numerically, the hyperbolic and conservative nature of
the GRHD equations allows to design a solution procedure based on the char-
acteristic speeds and fields of the system (i.e. Riemann solvers), translating
to relativistic hydrodynamics existing tools of computational fluid dynamics.
This procedure departs from earlier approaches [?], most notably in avoiding
the need for artificial dissipation terms to handle discontinuous solutions as
well as implicit schemes as proposed by [?].

The extension of modern high-resolution shock-capturing schemes (HRSC
hereafter) from classical fluid dynamics to relativistic hydrodynamics was ac-
complished in three steps: a) Casting the GRHD equations as a system of con-
servation laws; b) identifying the suitable vector of unknowns; and c) building
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up an approximate Riemann solver. For brevity we focus next on the approach
taken by [?]. The interested reader is addressed to the previous references for
specific details on additional formulations.

In [?] the GRHD equations were written as a first-order, flux-conservative
hyperbolic system, amenable to numerical work:

1√
−g

(
∂
√

γU(w)
∂x0

+
∂
√
−gFi(w)
∂xi

)
= S(w). (5)

With respect to an Eulerian observer and in terms of the primitive vari-
ables, w = (ρ, vi, ε), where vi is the 3-velocity of the fluid, the state vector
U (conserved variables) and the vectors of fluxes F and source terms S are
given by

U(w) = (D,Sj , τ), (6)
Fi(w) =

(
Dṽi, Sj ṽ

i + pδi
j , τ ṽi + pvi

)
, (7)

S(w) =
(

0, Tµν

(
∂gνj

∂xµ
− Γ δ

νµgδj

)
, α

(
Tµ0 ∂lnα

∂xµ
− TµνΓ 0

νµ

))
, (8)

with ṽi = vi−βi/α and δi
j being the Kronecker delta. The conserved quantities

are the relativistic densities of mass, momenta, and energy, defined as D =
ρW , Sj = ρhW 2vj , and τ = ρhW 2 − p−D.

HRSC schemes based on Riemann solvers use the local characteristic struc-
ture of the hyperbolic system of equations. The wave structure of the GRHD
equations (??) analyzed in [?] (see also [?]) showed that the eigenvalues (char-
acteristic speeds) of the corresponding Jacobian matrices are real and there
exists a complete set of right-eigenvectors. System (??) satisfies, thus, the
definition of hyperbolicity.

It is worth mentioning a key difference of the wave structure of the GRHD
equations with respect to the Newtonian case. This is also apparent in the
absence of gravity, that is, in special relativity, gµν=diag(−1, 1, 1, 1), which
we will adopt next for simplicity. In this case the eigenvalues (along the x-
direction) read [?]

λ0 = vx (triple) (9)

λ± =
1

1− v2c2
s

(
vx(1− c2

s)± cs

√
(1− v2)[1− vxvx − (v2 − vxvx)c2

s]
)

,(10)

where cs is the speed of sound and v2 = vivi. Thus, the eigenvalues along the
x-direction involve the coupling of the components of the velocity transverse
to the chosen direction (and similarly for the other two directions). Even in
the purely one-dimensional case, v = (vx, 0, 0), the eigenvalues read λ0 = vx

and λ± = vx±cs

1±vxcs
, the latter involving a Lorentz addition of the fluid velocity

and the sound speed, as opposed to the Galilean addition of the velocities
appearing in the Newtonian case (λ± = vx ± cs).
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A distinctive feature of the numerical solution of the RHD equations is
that while the numerical algorithm updates the vector of conserved quanti-
ties U (see below), the numerical code makes extensive use of the primitive
variables w. Those would appear repeatedly in the solution procedure, e.g.
in the characteristic fields, in the solution of the Riemann problem, and in
the computation of the numerical fluxes. For spacelike foliations of the space-
time (i.e. 3+1) the relation between the two sets of variables turns out to be
implicit. Therefore, iterative (root-finding) algorithms are required to recover
the primitive variables. Those have been developed for all existing formula-
tions [?, ?, ?]. This feature, absent in Newtonian hydrodynamics, may lead
to accuracy losses in regions of low density and small velocities, apart from
being computationally inefficient. Only for null foliations of the spacetime, the
procedure of connecting primitive and conserved variables is explicit for a per-
fect fluid EOS, a direct consequence of the particular form of the Bondi-Sachs
metric [?].

3 General relativistic magnetohydrodynamics

General relativistic MHD is concerned with the dynamics of relativistic, elec-
trically conducting fluids (plasma) in the presence of magnetic fields. Here,
we concentrate on purely ideal GRMHD, neglecting the presence of viscosity
and heat conduction in the limit of infinite conductivity (perfect conductor
fluid). As the GRHD equations discussed before, the GRMHD equations can
also be cast in first-order, flux-conservative hyperbolic form. The discussion
reported here follows the derivation of these equations as presented in [?] to
which the reader is addressed for details (see also references therein).

In terms of the (Faraday) electromagnetic tensor Fµν , Maxwell’s equations
read

∇ν
∗Fµν = 0, ∇νFµν = J µ, (11)

where Fµν = UµEν − UνEµ − ηµνλδUλBδ, its dual ∗Fµν = 1
2ηµνλδFλδ, and

ηµνλδ = 1√
−g

[µνλδ], where [µνλδ] is the completely antisymmetric Levi-
Civita symbol. Eµ and Bµ stand for the electric and magnetic fields mea-
sured by an observer with 4-velocity Uµ, and J µ is the electric 4-current,
J µ = ρqu

µ + σFµνuν where ρq is the proper charge density and σ is the
electric conductivity.

Maxwell’s equations can be simplified if the fluid is a perfect conductor.
In this case σ is infinite and, to keep the current finite, the term Fµνuν must
vanish, which results in Eµ = 0 for a comoving observer. This case corresponds
to the so-called ideal MHD condition. Under this assumption the electric field
measured by the Eulerian observer has components

E0 = 0, Ei = −αη0ijkvjBk, (12)
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and Maxwell’s equations ∇ν
∗Fµν = 0 reduce to the divergence-free condition

plus the induction equation for the evolution of the magnetic field

∂(
√

γBi)
∂xi

= 0,
1
√

γ

∂

∂x0
(
√

γBi) =
1
√

γ

∂

∂xj
{√γ[αṽiBj − αṽjBi]}. (13)

For a fluid endowed with a magnetic field the stress-energy tensor is the
sum of that of the fluid and that of the electromagnetic field, Tµν = Tµν

Fluid +
Tµν

EM, where Tµν
Fluid is given by Eq. (??) for a perfect fluid. On the other hand

Tµν
EM can be obtained from the Faraday tensor as follows:

Tµν
EM = FµλF ν

λ −
1
4
gµνFλδFλδ, (14)

which, in ideal MHD, can be rewritten as

Tµν
EM =

(
uµuν +

1
2
gµν

)
b2 − bµbν , (15)

where bµ is the magnetic field measured by the observer comoving with the
fluid and b2 = bνbν . The total stress-energy tensor is thus given by

Tµν = ρh∗uµuν + p∗gµν − bµbν , (16)

with the definitions p∗ = p + b2/2 and h∗ = h + b2/ρ.
Following [?] the conservation equations for the energy-momentum tensor,

together with the continuity equation and the equation for the evolution of the
magnetic field, can be written as a first-order, flux-conservative, hyperbolic
system equivalent to (??). The state vector and the vector of fluxes of the
GRMHD system of equations read:

U(w) = (D,Sj , τ, B
k), (17)

Fi(w) = (Dṽi, Sj ṽ
i + p∗δi

j − bjB
i/W,

τ ṽi + p∗vi − αb0Bi/W, ṽiBk − ṽkBi), (18)

where the conserved quantities are now defined as D = ρW , Sj = ρh∗W 2vj −
αb0bj , and τ = ρh∗W 2−p∗−α2(b0)2−D. The corresponding vector of sources
coincides with the one given by Eq. (??) save for the use of the complete (fluid
plus electromagnetic field) stress-energy tensor (the magnetic field evolution
equation is source-free).

The hyperbolic structure of those equations is discussed in [?]. In the
classical MHD case the wave structure was analyzed by [?]. There are seven
physical waves: two Alfvén waves (with eigenvalues λa± = vx ± va, vx and
va being the fluid and Alfvén speeds, respectively), two fast and two slow
magnetosonic waves (λf± = vx ± vf , λs± = vx ± vs), and one entropy wave
(λe = vx), ordered such that λf− < λa− < λs− < λe < λs+ < λa+ < λf+ . The
expressions for the Alfvén and magnetosonic speeds read
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va =

√
B2

x

ρ
, (19)

v2
f,s =

1
2

c2
s +

B2
x + B2

y + B2
z

ρ
±

√(
c2
s +

B2
x + B2

y + B2
z

ρ

)2

− 4v2
ac2

s

 .(20)

The corresponding wave structure for relativistic MHD was thoroughly
analyzed by [?]. The investigation of the roots of the characteristic equation
showed that only the entropic waves and the Alfvén waves can be (explicitely)
obtained in closed form, while the magnetosonic waves are given by the nu-
merical solution of a quartic equation.

For the GRMHD formulation of [?] the characteristic speed of the entropic
waves propagating in the x-direction reads

λe = αvx − βx. (21)

For Alfvén waves, there are two solutions corresponding to different speeds of
the waves,

λa± =
bx ±

√
ρh + b2ux

b0 ±
√

ρh + b2u0
. (22)

Just as in the classical case, the relativistic MHD equations have degener-
ate states in which two or more wavespeeds coincide, which breaks the strict
hyperbolicity of the system. [?] has reviewed the properties of these degenera-
cies. In the fluid rest frame, the degeneracies in both classical and relativistic
MHD are the same: either the slow and Alfvén waves have the same speed
as the entropy wave when propagating perpendicularly to the magnetic field
(Degeneracy I), or the slow or the fast wave (or both) have the same speed as
the Alfvén wave when propagating in a direction aligned with the magnetic
field (Degeneracy II). These degeneracies have been characterized by [?] in
terms of the components of the magnetic field 4-vector normal and tangen-
tial to the Alfvén wavefront, bn, bt. When bn = 0, the system falls within
Degeneracy I, while Degeneracy II is reached when bt = 0. In addition, [?]
have also worked out a single set of right and left eigenvectors which are reg-
ular and span a complete basis in any physical state, including degenerate
states. Such renormalization procedure is a relativistic generalization of the
work performed by [?] in classical MHD.

On the other hand, as for the case of the GRHD equations discussed
before, iterative (root-finding) algorithms are also required for the GRMHD
equations to recover the primitive variables from the state vector. The recovery
procedure is in this case more involved than for unmagnetized flows. For
the GRMHD formulation discussed in this section [?] find the roots of an 8-
th order polynomial using a two-dimensional Newton-Raphson scheme. The
interested reader is addressed to [?] for a comparison of different methods.
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We end this section by pointing out that major advances on the physical
understanding of the wave structure of the relativistic hydrodynamics equa-
tions have been possible in recent years, remarkably thanks to the derivation
of exact solutions of the Riemann problem both in special relativistic hydro-
dynamics and MHD [?, ?, ?, ?, ?].

4 Solution procedure for the GRHD/GRMHD equations

Just as their Newtonian counterparts, the GRHD/GRMHD equations are
nonlinear hyperbolic systems of conservation laws. A distinctive feature of
such systems is that smooth initial data can develop discontinuities during
the time evolution. It is well known that standard finite difference schemes
show deficiencies when dealing with discontinuous solutions. Typically, first
order accurate schemes are too dissipative across discontinuities while second
order (or higher) schemes produce spurious oscillations near discontinuities.

Finite difference schemes provide numerical solutions of the discretised
version of the partial differential equations (PDEs). Therefore, convergence
properties under grid refinement must be enforced on such schemes to guaran-
tee the validity of the numerical result. The Lax-Wendroff theorem states that
for hyperbolic systems of conservation laws, schemes written in conservation
form converge to one of the so-called weak solutions of the PDEs. However,
the class of all weak solutions is too wide as there is no uniqueness for the IVP.
Thus, among all weak solutions, the numerical scheme must guarantee con-
vergence to the physically admissible solution, a property whose mathematical
characterisation was given by Lax for hyperbolic systems of conservation laws.

A conservative scheme for system (??) can be straightforwardly devised
by using the corresponding integral form:∫

Ω

1√
−g

∂
√

γU
∂x0

dΩ +
∫

Ω

1√
−g

∂
√
−gFi

∂xi
dΩ =

∫
Ω

SdΩ, (23)

where Ω is a region of the 4-dimensional manifold enclosed within a 3-
dimensional surface ∂Ω which is bounded by two spacelike surfaces Σx0 , Σx0+∆x0

and two timelike surfaces Σxi , Σxi+∆xi . For numerical purposes the above re-
lation can be written as:

Ūt+∆t − Ūt = −

(∫
Σx1+∆x1

√
−gF̂1dx0dx2dx3 −

∫
Σx1

√
−gF̂1dx0dx2dx3

)

−

(∫
Σx2+∆x2

√
−gF̂2dx0dx1dx3 −

∫
Σx2

√
−gF̂2dx0dx1dx3

)

−

(∫
Σx3+∆x3

√
−gF̂3dx0dx1dx2 −

∫
Σx3

√
−gF̂3dx0dx1dx2

)

+
∫

Ω

SdΩ, (24)



General relativistic hydrodynamics and magnetohydrodynamics 9

where

Ū =
1

∆V

∫ x1+∆x1

x1

∫ x2+∆x2

x2

∫ x3+∆x3

x3

√
γUdx1dx2dx3 (25)

and

∆V =
∫ x1+∆x1

x1

∫ x2+∆x2

x2

∫ x3+∆x3

x3

√
γdx1dx2dx3. (26)

The main advantage of this procedure is that those variables which obey
a conservation law are conserved during the evolution, as long as the bal-
ance between the fluxes at the boundaries of the computational domain and
the source terms are zero. The numerical fluxes appearing in Eq. (??) are
calculated at cell interfaces where the flow conditions can be discontinuous.
Those numerical fluxes are approximations to the time-averaged fluxes across
an interface, i.e.

F̂i+ 1
2

=
1

∆x0

∫ x0 n+1

x0 n

F(U(xi+ 1
2
, x0))dx0, (27)

where the flux integral depends on the solution at the numerical inter-
faces, U(xi+1/2, x

0), during a time step. Godunov first proposed to calculate
U(xi+1/2, x

0) by exactly solving Riemann problems at every cell interface to
obtain U(xi+1/2, x

0) = U(0;Un
i ,Un

i+1), which denotes the Riemann solution
for the (left and right) states Un

i , Un
i+1 along the ray xi/x0 = 0. This was a

procedure of far-reaching consequences as it was incorporated in the design of
numerical schemes for solving the Euler equations of classical gas dynamics
in the presence of shock waves, which led to major advances in the field.

The derivation of the exact Riemann solution involves the computation of
the full wave speeds to find where they lie in state space. This is a compu-
tationally expensive procedure, particularly for complex EOS and in multidi-
mensions. Furthermore, for relativistic multidimensional flows, the coupling
of all velocity components through the Lorentz factor results in the increase in
the number of algebraic Rankine-Hugoniot conditions to consider in the case
of shock waves and in solving a system of ODEs for the rarefaction waves. In
spite of this the exact solution of the Riemann problem in special relativis-
tic hydrodynamics has been derived [?, ?]. Nevertheless, the computational
inefficiency involved in the use of the exact solver in long-term numerical sim-
ulations motivated the gradual development of approximate Riemann solvers.
These, being much cheaper than the exact solver yield equally accurate results.

The spatial accuracy of the numerical solution can be increased by recon-
structing the primitive variables at the cell interfaces before the actual com-
putation of the numerical fluxes. Diverse cell-reconstruction procedures are
available in the literature (see references in [?, ?]) and have been straightfor-
wardly applied in relativistic hydrodynamics. Correspondingly, the temporal
accuracy of the scheme can be improved by advancing in time the equations
in integral form using the method of lines in tandem with a high-order, con-
servative Runge-Kutta method.
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The main approaches extended from computational fluid dynamics to build
HRSC schemes in relativistic hydrodynamics can be divided in the following
broad categories:

1. HRSC schemes based on Riemann solvers (upwind methods): Develop-
ments include both solvers relying on the exact solution of the Riemann
problem: [?, ?], relativistic PPM [?], Glimm’s random choice method [?],
and two-shock approximation [?, ?], as well as linearized solvers based
on local linearizations of the Jacobian matrices of the flux-vector Jaco-
bians, e.g. Roe-type Riemann solvers (Roe-Eulderink: [?]; Local Charac-
teristic Approach: [?, ?, ?]), primitive-variable formulation: [?], and Mar-
quina Flux Formula: [?].

2. HRSC schemes sidestepping the use of characteristic information (sym-
metric schemes with nonlinear numerical dissipation): Various ap-
proaches have been undertaken recently, including those by [?] (Lax-
Wendroff scheme with conservative TVD dissipation terms), [?] (Lax-
Friedrichs or HLL schemes with third-order ENO reconstruction algo-
rithms), [?] (non-oscillatory central differencing), and [?, ?] (semidiscrete
central scheme of Kurganov-Tadmor [?]).

Other approaches worth mentioning include: 1) artificial viscosity [?, ?], 2)
flux-corrected transport scheme [?], and 3) smoothed particle hydrodynam-
ics [?, ?]. The interested reader is addressed to the review article by [?] for a
complete list of references on this topic as well as for an in-depth comparison
of the performance of these various approaches.

The numerical advantage of using Eq. (??) for the hydrodynamical vari-
ables is not apparent for the magnetic field components, as there is no guaran-
tee that such procedure conserves the divergence of the magnetic field during
an evolution. The main physical implication of the divergence constraint is
that the magnetic flux through a closed surface is zero. This property is es-
sential to the design of the so-called constrained transport method [?, ?], a
common choice among the methods designed to solve the induction equation
while preserving the divergence of the magnetic field [?].

The current approaches to solve the RMHD equations within HRSC
schemes also fall within the categories mentioned above, yet the develop-
ment is somewhat more limited here than in the purely hydrodynamical case.
Methods based on Riemann solvers have been initiated in special relativity
by [?] (includes eigenvector sets for degenerate states), [?] (reconstruction
not done on primitive variables), [?] (right and left eigenvectors in covariant
variables, but 1D), and [?] (right and left eigenvectors in conserved variables,
complete set even for degenerate states), as well as in general relativity by
[?, ?]. On the other hand symmetric schemes (namely HLL and Kurganov-
Tadmor) are being currently employed by a growing number of groups in
GRMHD [?, ?, ?, ?, ?]. All references listed here use conservative formula-
tions of the RMHD equations. Artificial viscosity approaches are advocated
by [?, ?].
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5 Applications in relativistic astrophysics

Numerical HD/MHD simulations are an essential tool in theoretical astro-
physics, both to model classical and relativistic sources. In the latter case the
progress achieved during the last few decades as a result of ever-increasing
computational improvements as well as greater understanding of the mathe-
matical aspects of the equations and of the numerical schemes to solve them,
has been outstanding. Furthermore, its scope involves a large number of sce-
narios at the forefront of research in astrophysics which has only been possible
to start approaching in recent times.

Examples include heavy ion collisions (in the special relativistic limit),
formation and propagation of jets associated with both active galactic nuclei
and γ-ray burst progenitors, gravitational stellar collapse to neutron stars and
black holes, pulsations and instabilities of rotating relativistic stars, accretion
on to black holes, and binary neutron star mergers. Such a list of applications
is too large to allow for an adequate coverage within the space constraints
of this article. Hence, only a paradigmatic example will be briefly discussed
here, namely gravitational stellar core collapse to a neutron star, address-
ing the interested reader to [?, ?] and references there in for more extended
discussions.

The gravitational collapse of massive stars is a distinctive example in rel-
ativistic astrophysics involving self-gravitating fluids whose dynamics is gov-
erned by the GRHD/GRMHD equations coupled to Einstein’s gravitational
field equations. Stars with initial masses larger than ∼ 9M� (where M� is
the mass of the Sun) end their thermonuclear evolution developing a core
composed of iron group nuclei, which is dynamically unstable against gravi-
tational collapse. The core collapses to a neutron star releasing gravitational
binding energy of the order ∼ 3 × 1053 erg (M/M�)2(R/10 km)−1, sufficient
to power a supernova explosion. Numerical simulations show how sensible the
explosion mechanism is to the details of the post-bounce evolution: gravity,
the nuclear EOS and the properties of the nascent neutron star, the treat-
ment of the neutrino transport, and the neutrino-matter interaction. Only
recently simulations including state-of-the-art neutrino transport, in which
the Boltzmann equation is solved in connection with the hydrodynamics, are
becoming possible (see [?] and references therein). Relativistic simulations of
microphysically detailed core collapse beyond spherical symmetry are not yet
available.

Steps towards that final goal are however being taken. Numerical sim-
ulations of (axisymmetric) relativistic rotational core collapse, approximat-
ing Einstein’s equations for a conformally-flat 3-metric, were first reported
in [?]. These did not include the necessary microphysics involved in super-
nova modelling as they aimed at computing the gravitational radiation from
core collapse, to highlight the differences in the dynamics and waveforms be-
tween Newtonian and relativistic gravity. The gravitational wave signal is
characterised by a burst associated with the hydrodynamical bounce followed
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by the proto-neutron star ringdown phase. While the central density reaches
higher values in relativistic gravity the gravitational wave signals are of com-
parable amplitudes, which constraints the chances for detection to galactic
events. Further simulations have improved the approximation in the metric
equations [?] or use the full Einstein equations [?]. First attempts towards
simulating GRMHD core collapse are currently being taken.

6 Summary

Formulations of the equations of (inviscid) general relativistic hydrodynamics
and (ideal) magnetohydrodynamics have been discussed, along with methods
for their numerical solution. Upon the explicit choice of an Eulerian observer
and suitable fluid and magnetic field variables, it is possible to cast both
systems of equations as first-order, hyperbolic systems of conservation laws.
During the last fifteen years, the so-called (upwind) high-resolution shock-
capturing schemes based on Riemann solvers have been extended from classi-
cal to relativistic fluid dynamics (both special and general), to the point that
GRHD simulations in relativistic astrophysics are routinely performed nowa-
days. While such advances also hold true in the case of the MHD equations,
the development still awaits here for a thorough numerical exploration. The
article has also presented a brief overview of numerical techniques, providing
examples of their applicability to general relativistic fluids and magneto-fluids
in scenarios of relativistic astrophysics.

It is worth spending a last comment to mention the long-term, numerically
stable formulations of Einstein’s equations (or accurate enough approxima-
tions) that have been proposed by several Numerical Relativity groups world-
wide in recent years. The paradigm which the numerical relativist is currently
confronted with has suddenly changed for the best. Accurate and long-term
stable, coupled evolutions of the GRHD/GRMHD equations and Einstein’s
equations are just becoming possible in three-dimensions (benefited from the
steady increase in computing power), allowing for the study of interesting rela-
tivistic astrophysics scenarios for the first time, such as gravitational collapse,
accretion onto black holes, and binary neutron star mergers.
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